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ABSTRACT

CT colonography is a screening technique for adenomatous
colorectal polyps, which are important precursors to colon
cancer. Computer aided detection (CAD) systems are devel-
oped to assist radiologists. We present a CAD system that
substantially reduces false positives while keeping the sensi-
tivity high. Hereto, we combine protrusion measures derived
from the solution of a non-linear partial differential equation
(PDE) applied to both an explicit mesh and an implicit volu-
metric representation of the colon wall. The shape of the pro-
truding elements is efficiently described via a technique from
data visualization based on curvature streamlines. A low-
complex pattern recognition system based on an intuitive fea-
ture from the aforementioned representations improves per-
formance to less than 1.6 false positives per scan at 92% sen-
sitivity per polyp.

1. INTRODUCTION

Colorectal cancer is the second leading cause of death due
to cancer in the Western world [1]. It has been shown that
screening for adenomatous colorectal polyps, which are im-
portant precursors to cancer, and subsequent removal of iden-
tified lesions significantly reduces the incidence of colon car-
cinoma [2, 3]. Computed tomography colonography (CTC) is
a rapidly evolving technique that is advocated for screening.
To assist the radiologists, effort is put in the development of
computer aided detection (CAD) systems [4, 5, 6, 7, 8, 9].

Traditionally, polyps are tentatively detected by curva-
ture derived features. Subsequently, the candidates thus
obtained are classified features describing the image struc-
ture such as curvature and intensity. The latter are typically
involved to reject falsely detected stool (frequently having a
granulated grey-value structure due to air bubbles) and false
detections emanating from partial volume effects. It was
demonstrated that no other features but the aforementioned
ones are required for a performance that is comparable to
optical colonoscopy [8].

Many different approaches for polyp detection have been
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presented in literature. To explore whether different tech-
niques are complementary, we revisit some techniques origi-
nated in our previous work. It has been shown that polyps can
be detected equally well as protrusions on an explicit (mesh-
surface) representation as on an implicit (grey-level) repre-
sentation of the colon wall [9]. In this paper, we present a low-
complex, unambiguous pattern recognition step, which com-
bines the two approaches and reveals that they are to some
extent complementary. Moreover, a streamline analysis, orig-
inally used in the field of data visualization, is incorporated
in our framework. It will be shown that this analysis will also
significantly improve the overall results.

2. MATERIALS

For evaluation, a subset of 28 patients from a larger study
[10] is used. All patients adhered to an extensive laxative
regime and no fecal tagging agent was administered. The data
sets consist of scans in both prone and supine positions; the
slice thickness was 3.2 mm. The reference standard is optical
colonoscopy. Expert radiologists retrospectively indicated the
location of polyps by annotating a point in the 3D data set
using the reference standard. 65 polyp annotations were made
in the 56 scans, corresponding to 40 polyps larger than or
equal to 6 mm. The candidate segmentations were labeled by
comparison to these annotations. A polyp was counted as a
true positive CAD detection if it was found in at least one of
the two scans.

3. PROTRUSION-BASED DETECTION OF POLYPS

Polyps may be characterized by the condition that the small-
est principal curvature is larger than zero. In other words, they
are caplike structures, whereas colonic folds are elongated
with typically one positive curvature and the other close to
zero or (slightly) negative. Because of the cylindrical global
nature of the colon, regions with two positive curvatures are
relatively scarce. The principal curvatures of the colon wall
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can either be computed by differentiation of a mesh represen-
tation or directly from the underlying image data [11].

Previously, we introduced two distinct, iterative schemes
for the detection of polypoid objects by the amount of protru-
sion compared to the background. The updating function in
both schemes is abstractly defined as:

X = Xt pdt- f(—ko) (1)

in which f (—k2) is a function that is designed to operate on
an object only if the smallest curvature is positive and dt is
a time step [12, 9]. In the explicit method f (+) is related to
the force applied to the mesh vertices, whereas in the implicit
method this function modifies the intensity of voxels in such a
way that ’protruding’ intensities are smoothed into the back-
ground. Both approaches involve a repeated application of (1)
until ko is smaller than or equal to zero everywhere or until
some convergence criterium is satisfied.

3.1. Complementary Protrusion Analysis

It may be concluded from the previous section that polyps
are protrusions in both the explicit (mesh) and in the im-
plicit (grey-value) representation of the colon wall. In prac-
tice we have found that particularly the false detections of
both methods are to some extent uncorrelated. For instance,
the explicit method typically had some false detections em-
anating from partial volume effects (PVE), whereas the im-
plicit method was more robust because it took the internal in-
tensities into account. Reversely, the implicit method, using
neighbourhood information, is inherently sensitive to neigh-
bouring structures, whereas such problems are excluded in
the explicit method in which feature measurement is confined
along the (infinitesimal thin) mesh. Because of the thinness
of some folds, the intensities inside folds are influenced by
the PVE. As a consequence, the implicit method also detects
candidates inside a fold. The mesh method has only limited
response at these locations.

The explicit approach directly acts on a representation of
the colon wall, whereas the implicit method interacts with the
underlying data. These two representations also reflect the
features to distinguish true polyps from false detections. Note
that the protruding aspect is predominantly represented in the
mesh representing the colon wall, whereas the material struc-
ture is captured in the underlying data. We conceive a com-
bined approach in which the protrusion extent is better rep-
resented in the explicit method, whereas the volumetric and
intensity properties are delivered by the implicit method.

3.2. Shape Analysis

It may be observed that so far information about the shape of
the objects remains limited. Effectively, lesions are detected
by the amount of protrusion only, irrespective of shape. An
effective representation of shape was recently described in

908

Fig. 1: (a) A polyp with its surrounding environment. (b)
Example of the curvature streamlines generated in the vicinity
of the polyp.

the literature on data visualization, deriving from curvature
streamline analysis.

Curvature streamlines (or lines of curvature) are defined
as lines that are tangent everywhere to one of the two prin-
cipal curvature direction vector fields on the surface. Tech-
niques for deriving curvature streamlines on the surface were
presented in [13]. In order to capture the essential surface
shape information, streamlines were adaptively spaced over
the whole surface with spacing dependent on the local prin-
cipal curvature magnitudes. On less curved surface regions,
fewer streamlines were generated than on highly curved sur-
face regions.

Curvature streamlines that are constrained to the colonic
wall have the useful characteristic that they tend to encircle
polyp necks. The *winding angle’ feature was derived to uti-
lize this characteristic. It is defined as the cumulative signed
change of direction along a streamline. At each sample point,
the differential change of direction is determined based on
the surface normal at that point. Closed streamlines, such as
those around polyp necks, have a winding angle of at least 27r.
A candidate was assigned the maximum winding angle of a
streamline in its vicinity. Initial experimentation showed that
this winding angle feature correlated highly with true polyp
detections and could thus be useful to reduce the number of
false positives (FPs) found by CAD systems [13]. Special
care should be taken to ensure that streamlines are sufficiently
long in order to fully capture polyp surface geometry [14].

4. EXPERIMENTS AND RESULTS

The detections on the explicit representation (Section 4.1) are
at the basis to analyse how protrusions are detected with the
implicit method and how the streamline analysis may con-
tribute (Section 4.2). In the last section, FROC analysis shows
the improvement of each newly added feature.



4.1. Combined CAD System Based on Protrusion

The explicit method actually involves two features. First, we
use a feature derived from the displacement field of the mesh.
This feature measures the percentage of the candidate with
a displacement larger than a certain threshold 7', further de-
noted as 7. We use a threshold of 0.6 mm as in [8]. This
design favors candidates with steep edges and compact forms.
The second feature we use is the mean intensity of the candi-
date [8], calculated as a tonal weighted sum of all voxels in-
cluded in a segmentation mask. The latter consists of the area
included between the original and the displaced mesh.

To analyse the performance of a combined system, the
correspondences between candidates found by both methods
should be established. The implicit method acts only on these
regions in the image where a candidate was found by the ex-
plicit method. These regions are obtained by ten times di-
lation of the binary segmentation mask of the candidate. A
corresponding segmentation area for the implicit method is
derived from the deformed image by thresholding the inten-
sity difference at a value of 100 Hounsfield unit (HU) (as in
[9]). Thus, each candidate from the implicit method is inher-
ently linked to a corresponding detection on the mesh.

Fig. 2 contains two scatter plots of the maximum intensity
difference derived from the implicit method versus the max-
imum displacement of the mesh (Fig. 2(a)) and versus @
derived from the displacement field (Fig. 2(b)). It can be seen
that the maximum mesh displacement and the maximum in-
tensity difference correlate well for polyps (black dots). In
both scatter plots two regions of false detections (grey dots)
can be observed in which the depicted features are uncorre-
lated (top-left and bottom right, dash-dotted). One region
has rather low maximum intensity change but concurrently
quite large maximum displacement of the mesh or ®p; an-
other region is characterized by a large maximum intensity
difference, but a low maximum mesh displacement or ®.
The indicated boundaries of the feature space (dashed lines)
in Fig. 2(a) represent the two thresholds used in the candidate
generation.

4.2. Streamline Analysis

For all detections on the mesh, a centerline through the cen-
ter of gravity and the center of curvature of the segmentation
mask is computed [15]. The intersection of this line and the
mesh defines the initial seed point for the streamline analy-
sis. For each detection curvature streamlines are generated
within a spherical ROI with 16 mm radius around the seed
point. As explained in Section 3.2, the winding angle is cal-
culated on these streamlines as the cumulative signed change
of direction along the streamline. At each sample point, the
differential curvature is derived relative to the surface normal
at that point. In other words, when a streamline forms a circle,
its absolute winding angle is 27 or more (for polyp character-
ization the sign of the winding angle is not important). Im-
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Fig. 2: Scatter plots of a larger (equivalent) data set (86 pa-
tients) showing (a) the maximum mesh displacement of a can-
didate, and (b) ®7 vs. the maximum intensity difference de-
rived from the implicit method. The black dots correspond to
polyps and the grey dots to false detections.

portantly, an absolute winding angle of more than 27 is not
necessarily more ‘polyp-like’ than a winding angle equal to
27. Therefore, we clip this feature to a maximum of 27, i.e.
U, = min (|¥], 27). This hypothesis is confirmed by FROC
analysis as shown in Fig. 4(b).

Fig. 3 shows scatter plots of (a) the absolute winding an-
gle |¥| and (b) the clipped winding angle ¥, vs. ®1 (derived
from the mesh displacement field). Again, the black dots de-
note the polyps and the grey dots denote the false detections.
Observe that almost all polyps have a winding angle close to
or larger than 27, whereas many false detections have lower
winding angles. In other words, the winding angle might in-
deed help to distinguish between polyps and false detections.

4.3. FROC Analysis

Fig. 4 shows FROC curves describing the performance of the
CAD system. The FROC curves are computed by ten times
repeated ten-fold cross-validation. In all cases, we used a lo-
gistic classifier and we discarded detections on the rectal tube.

Initially, the system was based on two features: & and
the mean intensity. The performance of this system (Ex) is
shown in Fig. 4(a) by the dash-dotted line. Then, the implicit
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Fig. 3: Scatter plots showing ®r versus (a) |V| and (b) V..
The black dots correspond to polyps and the grey dots to false
detections.
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Fig. 4: FROC curves for polyp detection systems consist-
ing of a combination of the explicit method (Ex), the implicit
method (Im), and the streamline analysis (U /¥ ..).

method (Im) was added by means of the maximum intensity
difference feature; the resulting performance is given by the
large dashed line. Finally, the clipped winding angle feature
¥ . was included to both previous configurations, represented
by the small dashed respectively the solid line. We conclude
that 92% of the polyps were detected with less than 1.6 false
positives per scan when all four features are included. The er-
ror bars denote two times the standard deviation in the number
of false positives over all scans at 85% sensitivity. Actually,
the standard deviation of the FROC curves is over seven times
smaller due to averaging over all scans.

5. CONCLUSIONS

We present a polyp CAD system that detects polyps based
on four intuitive features. The detection consists of solving
Equation 1 by means of two different approaches, which char-
acterize different aspects of the candidates. In effect, protrud-
ing objects are detected by means of deforming an explicit
representation of the colon surface or by means of modifying
the intensity data containing an implicit representation. We
also added a shape-descriptor derived from curvature stream-
line analysis. It was shown that the feature based on the mesh
displacement field, the mean intensity, the maximum inten-
sity difference and the streamline’s winding angle are suffi-
cient for optimal performance. We analyzed 56 scans from
28 patients and it was found that over 92% of the polyps were
detected with less than 1.6 false positives per scan.
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